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Abstract This paper connects non-equilibrium statistical mechanics and optimal nonlin-
ear filtering. The latter concerns the observation-conditional behaviour of Markov signal
processes, and thus provides a tool for investigating statistical mechanics with partial ob-
servations. These allow entropy reduction, illustrating Landauer’s Principle in a quantitative
way.

The joint process comprising a signal and its nonlinear filter is irreversible in its invariant
distribution, which therefore corresponds to a non-equilibrium stationary state of the associ-
ated joint system. Macroscopic entropy and energy flows are identified for this state. Since
these are driven by observations internal to the system, they do not cause entropy increase,
and so the joint system makes statistical mechanical sense in reverse time.

Time reversal yields a dual system in which the signal and filter exchange roles. Despite
the structural similarity of the original and dual systems, there is a substantial asymmetry in
their complexities. This reveals the direction of time, despite the systems being in stationary
states that do not produce entropy.
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1 Introduction

This paper makes connections between non-equilibrium statistical mechanics and optimal
nonlinear filtering. The unifying theme is the theory of Markov processes. These play a cen-
tral role in the stochastic dynamics approach to statistical mechanics, where they are used to
model the coarse-grained dynamics of Hamiltonian systems. In this context, the irreversibil-
ity of a time-homogeneous Markov process in an invariant distribution is associated with a
non-equilibrium stationary state, and its large deviations are associated with fluctuations in
entropy [26, 28].

Markov processes also play a central role in the theory of optimal nonlinear filtering.
This is a branch of signal processing in which a Markov signal process is estimated on the
basis of partial observations corrupted by noise. The nonlinear filter is a causal device that
computes an estimate of the signal at each time t , based on prior statistical knowledge and
the history of the observation up to t . This estimate is chosen to minimise an appropriate
cost function, such as the mean-squared error. In all but a few special cases, it is impossible
to compute such estimates without first computing the observation-conditional distribution
of the signal [5], or at least approximating it. This leads to a substantial asymmetry in the
dynamical complexities of a signal process and its nonlinear filter.

By considering the nonlinear filter for a process that models the coarse-grained dynamics
of a Hamiltonian system, we are able to investigate the statistical mechanics of the latter in
the presence of partial observations. These allow the reduction of entropy in the manner of
Maxwell’s demon [30]. Thought of in this way, the nonlinear filter is a demon that reduces
entropy by storing partial information on the Hamiltonian system. We develop full infor-
mation flow models for the nonlinear filter. These provide precise quantitative examples of
Landauer’s Principle [25] in both ‘directions’: the supply of information to the filter allows
it to reduce entropy; the disposal of information by the filter causes entropy to increase.

The nonlinear filter process (i.e. the stochastic process of conditional distributions) is
itself Markov, as is the joint process comprising the signal and filter components, and so
both can be associated with the coarse-grained dynamics of abstract Hamiltonian systems.
The system corresponding to the joint process can be decomposed into that corresponding
to the filter process and a conditional system. The latter is associated with the degrees of
freedom of the original system that are not revealed by the observation. The conditional
system is shown to exhibit a variant of the Second Law of Thermodynamics in which the
(observation-conditional) entropy is a submartingale. (This is a stochastic process whose
average future value, conditioned on information available in the present, is no smaller than
its current value.)

Regardless of whether or not the signal process is reversible, the joint process is not; the
flow of information between the signal and filter represents an irreversible component of
their interaction. In its invariant distribution the joint process is associated with a station-
ary non-equilibrium state that exhibits macroscopic flows of entropy and energy. These are
driven by the observation mechanism (which is internal to the system) rather than by exter-
nal fields or boundary conditions, and so they are not accompanied by entropy increase. The
(abstract) joint system lies on the boundary between systems that do and do not obey the
Second Law of Thermodynamics. Because of this, and other symmetry properties derived
here, the joint system makes statistical mechanical sense in reverse time. In fact, time rever-
sal yields a dual system with the same properties as the original. The original signal and filter
processes exchange roles in reverse time, and information and energy flow in the opposite
direction; these flows are now caused by the supply of dual observation information.

The dual system has one striking feature that distinguishes it from the original—in con-
trast with the general rule, the dynamics of the dual filter are simpler than those of the dual
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signal. A nonlinear filter has to store all the information it has extracted from the past of
the observation that may have relevance to the future of the signal. Because of the effects
of nonlinear dynamics and random forcing this typically requires very complex dynamics.
That this is not true of the dual system is an indicator of the direction of time that is not de-
pendent on the observation of convergence towards a stationary state, nor on the observation
of entropy production in a stationary state.

The paper builds on earlier work appearing in [34], which develops interactive statis-
tical mechanics for the linear Gaussian case. The ‘nonlinear’ filter is then linear, and the
conditional distribution it calculates is parametrised by a finite number of statistics (in fact,
the conditional mean). Although time reversal is not considered in that paper, the linear
Gaussian case it treats is one example which does not share the time asymmetry property
mentioned above; the dual to the Kalman-Bucy filter is another Kalman-Bucy filter of iden-
tical structure and dimension [36].

The paper considers continuous time systems only, although there is no fundamen-
tal difference between discrete and continuous time systems in the results obtained. The
Markov signal process is assumed to take values in a complete separable metric space,
thereby including finite or countably infinite state Markov jump processes, finite- or infinite-
dimensional diffusions, and the function spaces in which the nonlinear filters for these
processes evolve. In order to aid clarity, two examples are developed in tandem with the
general theory—one in which the signal is a finite-state Markov jump process, and another
in which it is a multidimensional diffusion process. The partial observations are of finite
dimension, and of the ‘signal-plus-white-noise’ type (although brief mention is made of
Poisson counting process observations in the context of the dual to the system with finite-
state signal). There is no fundamental problem extending the ideas to observation processes
of infinite dimension; however, the finite-dimensional case retains its salient features, and is
more accessible to rigorous proof from the nonlinear filtering literature.

Many of the formal results of the paper are based on non-trivial theorems of measure-
theoretic probability and stochastic calculus. However, the paper has been written with the
non-expert in these fields in mind. Technical conditions have been omitted wherever they
shed no light on the underlying ideas; instead, reference is made to appropriate sources.

The material is developed as follows. Section 2 reviews the stochastic dynamics ap-
proach to statistical mechanics and derives the statistical mechanical laws obeyed by
Markov processes in a very general setting. Section 3 introduces nonlinear filtering for these
processes, and gives dynamical formulae by which filters can be implemented. It also intro-
duces the information quantities of interest, the information supply, storage and dissipation,
and relates them to system parameters. Section 4 develops the statistical mechanics of the
interacting signal and filter processes. The abstract statistical mechanical system associated
with the joint process comprising the signal and filter is at the heart of this section. Sec-
tion 4.3 discusses implications for statistical mechanics with partial observations. Section 5
derives the properties of the dual system obtained by time reversal, showing that it retains
all the statistical properties of the original. Finally, Sect. 6 discusses the complexity and
algebraic structure of filters considered as dynamical machines, and highlights the striking
asymmetry in complexity between the dual systems.

2 Markov Processes in Statistical Mechanics

In this section we review the notion that Markov processes can be used to model the coarse-
grained dynamics of Hamiltonian systems; this will be the starting point for the material on
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statistical mechanics with partial observations, and its connections with nonlinear filtering,
developed in later sections. The use of stochastic dynamics to model statistical mechanical
behaviour has a history going back at least to [22] and [39], where the Shannon entropy
was introduced in this context. The Markov property is shown there to arise through coarse-
graining. The Markov property is also consistent with a process being a ‘vanishingly small’
component of the (randomly initialised) phase space variable of a Hamiltonian system, [38].
For recent studies of entropy production and fluctuations in the context of the stochastic
dynamics of non-equilibrium systems see, for example, [2, 17, 26, 28].

Throughout the paper, all random variables and stochastic processes will be defined
on the probability space (�, F ,P). This is a space of outcomes, �, a σ -field of events
(subsets of � with well-defined probabilities of occurrence), F , and a probability measure
P : F → [0,1]. For example, the event that a particular scalar random variable ξ takes a
value exceeding (say) 1.5, B := {ω ∈ � : ξ(ω) > 1.5}, is a member of F and is assigned the
probability of occurrence P(B). We consider the evolution of stochastic processes over the
finite time interval [0, T ]. This can be thought of as a ‘time window’ on processes evolving
over longer (potentially infinite) intervals. Appropriate initialisation allows the study of both
dynamic and stationary effects.

The following paragraph introduces the Markov processes of interest in this paper. A fair
degree of generality is required in order to include the (probability distribution valued) filter
processes of Sects. 3 to 5. Technical assumptions, for example on the regularity of the sample
paths of the Markov processes, are needed for mathematical rigour. The reader disinterested
in such generalities and rigour should consult the two numbered paragraphs below, where
simple examples are developed.

Let (Xt ∈ X, t ∈ [0, T ]) be a time-homogeneous Markov process that takes values in a
complete separable metric space X, with metric dX . For any t ∈ [0, T ] the past and future
of X, (Xs, s ∈ [0, t]) and (Xs, s ∈ [t, T ]), are independent when conditioned on the present,
Xt . We shall assume that the sample paths of X have left and right limits at all t ∈ (0, T ),
and are left or right continuous at all t ∈ [0, T ]. (This admits continuous diffusion processes
and pure jump processes as special cases.) Let X be the Borel σ -field of subsets of X (i.e. the
smallest family of subsets of X that is closed under countable unions and intersections, and
contains the open sets of X). (X is an extremely rich collection of subsets B ⊆ X, for which
P(Xt ∈ B) is well defined.) The statistical properties of X can be obtained from its (time-
homogeneous) transition function, �(t, x,B), where t ∈ [0, T ], x ∈ X and B ∈ X :

P(Xt ∈ B | Xr, r ∈ [0, s]) = �(t − s,Xs,B) for any 0 ≤ s < t ≤ T .

For each t , let Pt be the distribution of Xt . We shall assume that this has a density pt with
respect to a (σ -finite) reference measure λX , so that, for any B ∈ X ,

Pt(B) = P(Xt ∈ B) =
∫

B

pt (x)λX(dx). (2.1)

We shall also assume that pt satisfies the following generalised Fokker-Planck (Kolmogorov
forward) equation

∂pt

∂t
(x) = (Apt)(x), (2.2)

where A is a linear operator.
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Remark 2.1 In many texts on Markov processes the generator and its adjoint are denoted L
(or A), and L∗ (or A∗), respectively. Here, we shall not make direct use of the generator,
and label its adjoint A, reserving the asterisk notation for the dual system in Sect. 5.

We shall use two examples of X, throughout the paper, to illustrate and motivate the
general theory. These are as follows.

1. The finite-state process. In this, X = {1,2, . . . , n}, dX is the discrete metric (in terms of
which, any element x ∈ X is zero distance from itself and unit distance from all other
elements), X is the set of all subsets of X (including X itself and the null set ∅), and
λX is the counting measure (i.e. λX(B) is the number of elements in B). X is a time-
homogeneous Markov jump process taking values in X, and having n × n rate matrix A.
For each t , Xt has probability density pt(x) = Pt({x}) = P(Xt = x) with respect to λX ,
and this evolves according to (2.2) with

(Ap)(x) =
n∑

x̃=1

Ax,x̃p(x̃). (2.3)

2. The multidimensional diffusion process. In this, X = R
n, dX is the euclidean metric,

X is the σ -field generated by the open hyper-rectangles, and λX is Lebesgue (vol-
ume) measure. X is a continuous R

n-valued diffusion process with vector-valued drift
coefficient b : R

n → R
n, and positive-semi-definite-matrix-valued diffusion coefficient

a : R
n → R

n×n. We assume that P0, a and b are sufficiently regular that Xt has a proba-
bility density, pt , for each t , and that this evolves according to (2.2) with

(Ap)(x) = 1

2

∑
i,j

∂2(ai,jp)

∂xi∂xj

(x) −
∑

i

∂(bip)

∂xi

(x). (2.4)

Modulo technical conditions, the multidimensional diffusion process will satisfy an Itô
stochastic differential equation of the following type:

Xt = X0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) dVs, (2.5)

where σ is a matrix square-root of a (a = σσ ′), and V is an n-vector Brownian motion
on �. (See, for example, [21].)

We shall further assume that X has a unique invariant distribution PSS with density pSS .
For example, this is true of the finite-state process if each state is reachable from all other
states in a finite number of steps having non-zero rates. For conditions on other processes
that lead to unique invariant distributions, see, for example, [4].

For measures λ and μ, and a function f , on a common metric space S, we define:

h(μ | λ) :=
{∫

S q(s) log(q(s))λ(ds) if μ has density q with respect to λ

+∞ otherwise,
(2.6)

〈f,λ〉 :=
{∫

S f (s)λ(ds) if the integral exists
+∞ otherwise.

(2.7)

h(μ | λ) is the relative entropy (Kullback-Leibler divergence) of μ with respect to λ.
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We consider a statistical mechanical system, ΣX , associated with the process X, regard-
ing Pt as the state of ΣX at time t . The internal energy EX(Pt ), entropy SX(Pt ), and free
energy FX(Pt ), of ΣX in this state are defined as follows:

EX(Pt ) := 〈HX,Pt 〉,
SX(Pt ) := −h(Pt | λX), (2.8)

FX(Pt ) := EX(Pt ) − SX(Pt ),

where,

HX(x) := − logpSS(x). (2.9)

(The energy function HX takes the value +∞ when pSS(x) = 0.) For the finite-state process,
SX(Pt ) is the Shannon entropy; for the diffusion process it is a differential entropy defined
in terms of Lebesgue (volume) measure in R

n.
The choice of energy function in (2.9) ensures that the invariant distribution PSS is a

Gibbs measure for ΣX , and gives rise to the properties in the following proposition. This is
a standard result; however, a short proof is included here for the sake of completeness, and
because it applies to a very general case (any Markov process taking values in a complete
separable metric space), and this is needed in Sect. 4.

Proposition 2.1

(i) The unique minimiser of the free energy of the statistical mechanical system ΣX is the
state PSS.

(ii) FX(PSS) = 0.
(iii) The free energy of ΣX is non-increasing.

Proof A simple calculation shows that FX(Pt ) = h(Pt | PSS), and so parts (i) and (ii) follow
from the non-negativity and strict convexity (where finite) of h(· | PSS), and the fact that
h(PSS | PSS) = 0. For any 0 ≤ s ≤ t ≤ T , let P

(2)
s,t be the two-point joint distribution, defined

as follows:

P
(2)
s,t (B,C) := P(Xs ∈ B,Xt ∈ C) =

∫
B

�(t − s, x,C)Ps(dx),

where � is the transition function for X. Let P
(2)

s,t,SS be this joint distribution in the special
case that Ps = PSS. It follows from the chain rule of relative entropy (Theorem C.3.1 in [13]),
that

h(Ps | PSS) = h
(
P

(2)
s,t | P (2)

s,t,SS

)

= h(Pt | PSS) +
∫

h
(
�̄(t, s, x, ·) | �̄SS(t − s, x, ·))Pt(dx)

≥ h(Pt | PSS),

where �̄(t, s, x, ·) is a regular (Xt = x)-conditional distribution for Xs under the joint dis-
tribution P

(2)
s,t , and �̄SS(t − s, x, ·) is the equivalent under the joint distribution P

(2)

s,t,SS. This
proves part (iii). �
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Remark 2.2 It is quite possible for FX(Pt ) to be infinite for all t . This can occur, for ex-
ample, if the evolution of X is deterministic, and results in an atomic invariant measure.
However, we shall not be interested in such ‘degenerate’ cases.

We can consider ΣX to be one component of a two-component energy-conserving sys-
tem, that includes a unit-temperature heat bath with which ΣX interacts. If the entropy of
this system is the sum of the entropies of its two components, then any change in this entropy
resulting from the evolution of Pt is the negative of the corresponding change in FX(Pt ).
Proposition 2.1 thus states that the entropy of the closed system is maximised by the state
PSS, and non-decreasing. For this reason, we shall refer to Proposition 2.1(iii) as a Second
Law for ΣX .

Convention on Randomisation If ΣX corresponds to a physical system in contact with a
physical heat bath, then the randomisation of X has its origins in energy exchange with
this heat bath. This is the case, for example, with the second-order electrical circuit in [34].
However, we shall also consider here, abstract statistical mechanical systems having their
origins in the equations of nonlinear filtering. Nevertheless, we still regard energy exchange
with a heat bath as being the sole mechanism by which the corresponding Markov process
is randomised. (The heat bath in question may include other system components.) This ran-
domising energy exchange can be any mix of the following two types.

• Invisible: energy fluctuates between ΣX and the heat bath on more finely grained spatial
and temporal scales than those revealed by HX .

• Visible: the only energy exchange is that revealed by HX .

The choice of λX affects the mix of these two types. For example, the choice of Lebesgue
(volume) measure with the second-order electrical circuit of [34] results in an energy func-
tion corresponding to the physical energy stored in the circuit, and so energy exchange with
the heat bath is fully visible. However, if λX were chosen to be the invariant distribution PSS,
then the energy function would be constant, and so all energy exchange with the heat bath
would be of the invisible variety. An important feature of the minimum free energy state PSS

is that its entropy cannot be changed by invisible energy exchange.

3 Observations and Nonlinear Filtering

Nonlinear filtering is a sub-discipline of signal processing in which a signal is estimated
on the basis of partial observations. Examples of its application include automatic speech
recognition, image processing and object tracking. In the first of these, for example, the
evolving configuration of the speech organs is modelled as a ‘hidden’ Markov process that
has to be estimated on the basis of the acoustic signal picked up by a microphone. Nonlinear
filters are causal systems; the estimates they provide at any particular time depend only on
the past and present values of the observation at that time. In the continuous-time setting,
the partial observations are often of the signal-plus-white-noise type.

We shall consider nonlinear filters for the Markov ‘signal’ process X of Sect. 2 given
initial and running observations. This will lead to a study of the statistical mechanics of a
partially observed version of ΣX in Sect. 4. The initial observation is a random variable, ψ ,
that is X0-conditionally independent of X, and such that the ψ -conditional distribution of
X0 is Z0; i.e., for any B ∈ X , P(X0 ∈ B | ψ) = Z0(B). In order to avoid any further need to
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discuss ψ , we shall assume that Z0 has been computed, and regard it as being a surrogate
initial observation. The running observation takes the form

Y r
t =

∫ t

0
g(Xs) ds + Wt for t ∈ [0, T ], (3.1)

where g : X → R
d is a continuous function, and W is a d-vector Brownian motion, inde-

pendent of (X,ψ). Equation (3.1) is a rigorous way of writing ‘Ẏ r
t = g(Xt) + Ẇt ’, which

says that Ẏ r
t is an observation of the signal, g(Xt ), plus white-noise, Ẇt , type. (The prob-

lem with this more natural representation is that Brownian motion is not differentiable, and
so Ẇ , and hence Ẏ r , is not properly defined in an outcome-by-outcome sense.) We assume
that the signal component of the running observation satisfies the following finite energy
condition:

E

∫ T

0
|g(Xt)|2 dt < ∞. (3.2)

The full observation is the process (Yt := (Z0, Y
r
t ), t ∈ [0, T ]).

The following definition and technical remarks define and discuss the metric spaces in
which the filter and observation variables evolve. They are essential for mathematical rigour,
but not to an intuitive understanding of what follows, and can thus be skipped by the reader
not interested in such details.

Definition 3.1

(i) (Z, dZ) is the metric space of probability measures on X having densities with respect
to the reference measure λX , where dZ is the total variation metric:

dZ(z, z̃) := sup
B∈X

{|z(B) − z̃(B)| + |z(X \ B) − z̃(X \ B)|}

= 2 sup
B∈X

|z(B) − z̃(B)|.

(ii) For each t ∈ [0, T ], (Yt , dY,t ) is the metric space Z × C([0, t];R
d), where C([0, t];R

d)

is the space of continuous functions from [0, t] to R
d , and the metric dY,t is defined as

follows:

dY,t ((z, y
r ), (z̃, ỹr )) = dZ(z, z̃) + sup

s∈[0,t]
‖yr

s − ỹr
s ‖.

(The observation available at time t , (Ys, s ∈ [0, t]), is a random variable taking values
in Yt .)

The nonlinear filter for X computes, at each time t , a regular (Ys, s ∈ [0, t])-conditional
distribution for Xt . This is a random variable Zt that takes values in Z, and has the following
properties:

(F1) Zt : � → Z is (Ys, s ∈ [0, t])-measurable;
(F2) Zt(B) = P(Xt ∈ B | Ys, s ∈ [0, t]).
The first property here means that Zt = Ft(Ys, s ∈ [0, t]) for some (measurable) map Ft :
Yt → Z. (It is this map that implementations of the filter must compute, or approximate.)
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Remark 3.1 (Technical) The filter map Ft can be shown to be continuous under mild techni-
cal conditions. (See, for example, [6, 7, 11]. These references prove continuity with respect
to a weaker topology on Z than that induced by dZ . However, the results of [7], which con-
cern the local Lipschitz continuity of Zt(B) for individual B ∈ X , can easily be extended to
the stronger topology of (Z, dZ) since the Lipschitz constants are the same for all B .)

Remark 3.2 (Technical) Since

2 sup
B∈X

|z(B) − z̃(B)| =
∫

X
|q(x) − q̃(x)|λX(dx),

where q and q̃ are the densities of z and z̃, (Z, dZ) inherits the properties of the space of
integrable functions L1(X, λX). In particular (Z, dZ) is complete and separable. (See, for
example, [12].) The filter process, (Zt , t ∈ [0, T ]), is thus a stochastic process taking values
in the complete separable metric space (Z, dZ).

In the most general case, the filter variable Zt can be calculated by means of an abstract
version of the Bayes formula, called the Kallianpur-Striebel formula [20]. However, the
greatest interest lies in recursive formulae for filtering that exploit the Markov nature of X.
These typically represent the filter process, Z, as the (continuous) solution of a stochastic
differential equation ‘driven’ by the running observation process, Y r . Let (ζt , t ∈ [0, T ])
be the process of probability densities corresponding to (Zt , t ∈ [0, T ]) (so that Zt(B) =∫

B
ζt (x)λX(dx)). We shall assume that ζ satisfies the following Itô stochastic differential

equation:

ζt (x) = ζ0(x) +
∫ t

0
(Aζs)(x) ds +

∫ t

0
ζs(x) (g(x) − 〈g,Zs〉)′ dνs, (3.3)

where A is the linear operator of (2.2) and (νt , t ∈ [0, T ]) is the so-called innovations
process, defined by

νt = Y r
t −

∫ t

0
〈g,Zs〉ds. (3.4)

Equation (3.3) is a variant of the Fokker-Planck equation (2.2) that includes a nonlinear term
depending on the running observation process, Y r , (through ν). It reduces to (2.2) if there is
no information on X in the latter (for example, if g is constant). For the finite-state signal,
A is as defined in (2.3), and (3.3) is a system of n stochastic ordinary differential equations,
first derived by Wonham [42]. For the multidimensional diffusion signal, A is as defined in
(2.4), and (3.3) is a stochastic partial differential equation called the Kushner-Stratonovich
equation [23, 24, 40]. The reader interested in rigorous derivations of recursive filtering
formulae for various types of signal is referred to [16] or [27].

The connections made in this paper between nonlinear filtering and statistical mechan-
ics involve an information flow model for the former. At time t , we have the partial ob-
servation (Ys, s ∈ [0, t]), which is statistically dependent on Xt . The mutual information,
I (Xt ; (Ys, s ∈ [0, t])), provides a measure of this dependence—it tells us how much infor-
mation on Xt we gain through the partial observation. For random variables 
 and � taking
values in metric spaces and having joint and marginal distributions P
,�, P
 and P�, the
mutual information is defined as follows:

I (
; �) = h
(
P
,� | P
 ⊗ P�

)
, (3.5)
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where h is the relative entropy defined in (2.6). I (
;�) is an absolute measure of infor-
mation gain; it does not depend on the choice of reference measures on the spaces in which

 and � take values. (Contrast this with the entropy of the signal, as defined in (2.8).) The
minimum possible value of I (
;�) is zero, which indicates that 
 and � are statistically
independent. If 
 and � take values in finite sets, then I (
;�) is bounded above by the
Shannon entropies of 
 and �.

We define information supply S, storage C, and dissipation D processes as follows: for
each t ∈ [0, T ],

S(t) := I ((Xs, s ∈ [0, T ]); (Ys, s ∈ [0, t])),
C(t) := I ((Xs, s ∈ [t, T ]); (Ys, s ∈ [0, t])), (3.6)

D(t) := S(t) − C(t).

Remark 3.3 (Technical) Since (by definition) the paths of (Xr, r ∈ [s, t]) have left and right
limits at all r ∈ (s, t), and are left or right continuous at all r ∈ [s, t], they take values in the
Skorohod space D([s, t];X). This has metric

dD,s,t (x, x̃) := inf
u∈U

sup
r∈[s.t]

{dX(xu(r), x̃r ) + |u(r) − r|},

where U is the set of continuous 1–1 functions from [s, t] to [s, t] with u(s) = s and
u(t) = t . The Skorohod space inherits from X the property of being a complete separable
metric space. (See, for example, [15].) The metric space, Yt , in which the observation paths
take values was introduced in Definition 3.1. The processes in (3.6) can thus be thought of
as random variables taking values in these metric (path) spaces.

Remark 3.4 Slightly different definitions of S(t) and C(t) were given in [34]. There,
(Xs, s ∈ [0, t]) was used instead of the whole X process in the definition of S(t), and Xt

was used instead of the future of X in the definition of C(t). That these are equivalent to
the definitions used here follows easily from Proposition 3.1(ii), below. The definitions used
here emphasise the fact that the supply and storage represent information derived from Y

that is useful for estimating the future of X as well as its past and present.

The following proposition states some facts about the joint process (X,Z) that will be
used later, and evaluates the information supply, storage and dissipation. A proof is given in
Appendix.

Proposition 3.1

(i) For each t ∈ [0, T ], ((Xs,Ys), s ∈ [0, t]) and ((Xs,Zs), s ∈ [t, T ]) are conditionally
independent given (Xt ,Zt ). In particular, the joint process (X,Z) is Markov.

(ii) For each t ∈ [0, T ], ((Xs,Ys), s ∈ [0, t]) and (Xs, s ∈ [t, T ]) are conditionally inde-
pendent given Xt .

(iii) For each t ∈ [0, T ], (Ys, s ∈ [0, t]) and ((Xs,Zs), s ∈ [t, T ]) are conditionally inde-
pendent given Zt . In particular, the filter process Z is Markov.

(iv) For each t ∈ [0, T ], the information supply, storage and dissipation admit the following
representations:

S(t) = C(0) + 1

2
E

∫ t

0
|g(Xs) − 〈g,Zs〉|2 ds, (3.7)
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C(t) = I (Xt ;Zt) = Eh(Zt | Pt), (3.8)

D(t) = EI ((Xs, s ∈ [0, t]); (Ys, s ∈ [0, t]) | Xt), (3.9)

where 〈·, ·〉 is as defined in (2.7), and I (
;� | �) is the �-conditional mutual infor-
mation

I (
;� | �) := h
(
P
,�|� | P
|� ⊗ P�|�

)
.

Remark 3.5 Results on the Feller Markov nature of Z and (X,Z), under slightly stronger
conditions, can be found in [3]. Equation (3.7) was derived for the case of the multidimen-
sional diffusion signal in [14].

Equation (3.9) shows that the dissipation is itself an (average) mutual information—
that between the observation process (Ys, s ∈ [0, t]) and the signal process (Xs, s ∈ [0, t]),
conditioned on knowledge of Xt . It follows from part (ii) that (3.9) remains valid if we
condition on (Xs, s ∈ [t, T ]) instead of Xt , and this shows that D(t) is that part of the
information on X derived from Y that is of no use in estimating the values that X takes from
time t onwards.

The filter can be thought of as a type of data encoder. At time t , it partially encodes
the observation path (Ys, s ∈ [0, t]) as the ‘statistic’ Zt . Clearly this encoding is lossy in
the sense that the observation path cannot be recovered from Zt . Since both (Ys, s ∈ [0, t])
and Zt take values in uncountably infinite spaces they both contain an infinite amount of
information, and this means that we cannot define a meaningful measure of the total infor-
mation loss arising from the ‘encoding’. However, we can define a meaningful measure of
information loss in the context of a specific estimation problem; this is simply the amount
by which the mutual information between the estimand and Zt is less than that between the
estimand and (Ys, s ∈ [0, t]). For the problem of estimating the whole signal process X, the
encoding of the filter at time t loses an amount of information D(t), but for the problem of
estimating its present and future it is lossless.

Proposition 3.1(iv) shows that the information supply has a well-defined rate at time t :

Ṡ(t) = 1

2
E |g(Xt) − 〈g,Zt 〉|2. (3.10)

Under various technical conditions on the regularity of the density processes p and ζ the
same is true of the dissipation. The rate of change of the storage, Ċ(t), can be found by
formal application of Itô’s rule to ζt log(ζt /pt )(Xt ), and this shows that the dissipation rate
at time t is

Ḋ(t) = E

(
Apt

pt

logpt − Aζt

ζt

log ζt

)
(Xt ). (3.11)

This is a Fisher information quantity. It reveals the sensitivity of the mutual information
C(t) to the randomisation in the dynamics of the signal. This was noted in [31] for the
multidimensional diffusion signal, where

Ḋ(t) = 1

2
E ∇ log(ζt /pt )

′a∇ log(ζt/pt )(Xt ). (3.12)

For the discrete-state signal,

Ḋ(t) = E

∑
x,x̃

(
log

ζt (x)

pt (x)
− log

ζt (x̃)

pt (x̃)

)
Ax̃,xζt (x). (3.13)
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Equations (3.10) and (3.11) show that the supply of information is entirely associated
with the second integral in (3.3), and that its dissipation is entirely associated with the first.
According to (3.10), Ṡ(t) is the ‘signal-to-noise power ratio’ of the running observation Y r ;
according to (3.11), Ḋ(t) is a measure of the rate at which X ‘forgets its past’.

The filter can also be thought of as being a dynamical machine that receives new
observation-derived information at the rate Ṡ(t), and discards historical information at the
rate Ḋ(t). It stores an amount of information C(t) on X, which is that part of the supply to
date useful for estimating the present and future of X.

4 Interactive Statistical Mechanics

This section develops statistical mechanical interpretations of the interaction between the
signal and filter processes of Sects. 2 and 3. It starts with a conditional variant of the statis-
tical mechanical system of Sect. 2. This is shown to be one component of an abstract joint
system that obeys the statistical mechanical laws of Sect. 2. This system is shown to exhibit
macroscopic flows of energy. The results are then interpreted in the context of a partially
observed variant of the system of Sect. 2.

4.1 The Conditional System ΣX|Z

The state of the statistical mechanical system of Sect. 2 at time t is the probability measure
Pt ∈ Z, which evolves according to (2.2). The state of the conditional system ΣX|Z , at time t ,
is the filter variable Zt : � → Z, which fulfils (F1) and (F2), and evolves according to (3.3).
Zt is a random probability measure, and represents a refined version of Pt that takes into
account the (random) partial observations available up to time t as well as the prior distri-
bution Pt . In what follows, we define an energy function for ΣX|Z in such a way that Zt is
the minimum free energy state at time t .

In order to study the statistical mechanics of ΣX|Z it is also useful to define other, more
general states not sharing this property. Let (Z̃t , t ∈ [0, T ]) be a stochastic process taking
values in Z, that satisfies (F1) for all t , and whose density process, (ζ̃t , t ∈ [0, T ]), sat-
isfies (3.3). (This will differ from (Zt , t ∈ [0, T ]) if Z̃0 �= Z0.) The average value of the
density, Eζ̃t , corresponds to a state of the original system ΣX , and satisfies (2.2).

The energy function of ΣX|Z is defined as follows:

HX|Z(x, t) := − log ζt (x), (4.1)

where (ζt , t ∈ [0, T ]) is the filter density process. HX|Z is time-dependent and random
through its dependence on ζt . The internal energy, entropy and free energy of ΣX|Z have
similar forms to those of ΣX , defined in (2.8):

EX|Z(Z̃t , t) := 〈HX|Z(·, t), Z̃t 〉,
SX|Z(Z̃t ) := SX(Z̃t ) = −h(Z̃t | λX), (4.2)

FX|Z(Z̃t , t) := EX|Z(Z̃t , t) − SX|Z(Z̃t ).

These are random through their dependence on ζt and ζ̃t . The conditional system obeys the
following variants of the statistical mechanical laws of Proposition 2.1.
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Proposition 4.1

(i) The unique minimiser of the free energy of the conditional system ΣX|Z at time t is the
state Zt .

(ii) FX|Z(Zt , t) = 0 for all t .
(iii) If EFX|Z(Z̃t , t) < ∞ and h(�̃0 | �0) < ∞, where �0 and �̃0 are the distributions

of Z0 and Z̃0, respectively, then the free energy of ΣX|Z , as its state Z̃t evolves, is a
positive (Ys, s ∈ [0, t])-supermartingale.1

Proof Parts (i) and (ii) are no more than parts (i) and (ii) of Proposition 2.1 applied to Z̃t ,
realisation by realisation. Part (iii) follows from Theorem 2.3 in [8]. �

For each realisation of the observation process Y , the conditional system can be consid-
ered to interact with a unit temperature heat bath in the same way as was ΣX . As the state
Z̃t evolves, changes in the entropy of the two-component system comprising ΣX|Z and the
heat bath are the negative of the corresponding changes in the free energy of ΣX|Z . With this
interpretation, Proposition 4.1(iii) shows that the entropy of this two-component system is a
(Ys, s ∈ [0, t])-submartingale. (The negative of a supermartingale.) The average entropy of
this two-component closed system is, therefore, non-decreasing. However, the entropy can
decrease for individual realisations of the observation process.

We shall refer to Proposition 4.1(iii) as a Conditional Second Law. It is somewhat dif-
ferent from the marginal Second Law of Proposition 2.1(iii), because of the time-varying
nature of HX|Z . This allows the energy and entropy of ΣX|Z to change as a result of inter-
action with the filter, and not solely as a result of interaction with the heat bath. The filter
controls HX|Z in order to hold ΣX|Z in its (time varying) minimum free energy state.

Remark 4.1 The fact that the filter does this is a special example of a very general property
of Bayesian estimators developed in [33]. There, the two ‘directions’ of Bayesian estima-
tion (likelihood function to posterior distribution, and vice-versa) are given dual variational
characterisations. In particular, the posterior distribution is characterised as the unique min-
imiser of apparent information. In the present context, this apparent information is the free
energy FX|Z .

Remark 4.2 A state Z̃t distinct from Zt may be regarded as the filter variable for an in-
correctly initialised filter. (See [8].) The statistical mechanical properties in Proposition 4.1
thus have direct relevance to error sensitivity issues in nonlinear filtering. In particular, the
relative insensitivity of nonlinear filters to errors made in the distant past is a consequence
of a ‘dissipative’ law having a statistical mechanical interpretation.

4.2 The Joint System ΣJ

Proposition 3.1(i) shows that the joint process (X,Z) is Markov, and so, modulo technical
conditions ensuring the existence of a joint invariant distribution, it admits the statistical
mechanical interpretation of Sect. 2. The state of the resulting joint system, ΣJ , at time t

is the joint distribution of Xt and Zt , z ⊗ �t , where �t is the marginal distribution of Zt .

1A (Ys , s ∈ [0, t])-supermartingale is a conditionally decreasing real-valued stochastic process; i.e. a process
(ηt , t ∈ [0, T ]) that is adapted to (Ys , s ∈ [0, t]) (for all t , ηt = Gt (Ys, s ∈ [0, t]) for some measurable Gt :
Yt → R), and such that, for all 0 ≤ s ≤ t ≤ T , E (ηt | Yr , r ∈ [0, s]) ≤ ηs .



724 N.J. Newton

z ⊗ �t is a probability measure on X × Z , where Z is the Borel σ -field of (Z, dZ). In fact,
for any B ∈ X and C ∈ Z ,

P(Xt ∈ B,Zt ∈ C) = (z ⊗ �t)(B × C) =
∫

C

z(B)�t(dz). (4.3)

Remark 4.3 The notation ⊗ here is a generalisation of the usual tensor product; it is defined
by (4.3), and represents the factorisation of a probability measure on a product space into
a marginal measure on one space and a regular conditional measure on the other. (This is
possible since (X, dX) is complete and separable. See, for example, Chap. 1 in [13].) z ⊗�t

is special type of probability measure on X × Z in that the regular z-conditional measure on
X in the factorisation z ⊗ �t is z itself. More general states of the joint system not sharing
this property occur in studies of errors in filter dynamics, but will not be considered further
in this paper.

We assume that (Zt , t ∈ [0, T ]) has an invariant distribution �SS. (See [3] on this issue.)
We also assume that �SS has a density, φSS, with respect to some reference measure λZ on Z .
(There may be no obvious candidate for λZ like the counting measure for the finite-state
signal process, or the volume measure for the multidimensional diffusion signal. However,
if all else fails, we can satisfy the above assumption by choosing λZ = �SS.)

The energy function for the joint system is as follows:

HJ (x, z) := − log(q(x)φSS(z)), (4.4)

where q is the density of z. (According to Definition 3.1, every z ∈ Z has a density with
respect to λX .) Following (2.8) and (4.2), we define the internal energy, entropy and free
energy of ΣJ in state z ⊗ �t as follows:

EJ (z ⊗ �t) := 〈HJ , z ⊗ �t 〉,
SJ (z ⊗ �t) := −h(z ⊗ �t | λX ⊗ λZ), (4.5)

FJ (z ⊗ �t) := EJ (z ⊗ �t) − SJ (z ⊗ �t).

Proposition 3.1(iii) shows that we can also apply the statistical mechanical interpretation
of Sect. 2 to the filter process, Z, alone. The corresponding filter system, ΣZ , has energy
function

HZ(z) := − logφSS(z). (4.6)

Its state at time t is �t , in which its internal energy, entropy and free energy are as follows:

EZ(�t ) := 〈HZ,�t 〉,
SZ(�t ) := −h(�t | λZ), (4.7)

FZ(�t ) := EZ(�t ) − SZ(�t ).

The joint energy function admits the following decomposition:

HJ (x,Zt ) = HX|Z(x, t) + HZ(Zt). (4.8)
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Fig. 1 The joint system

Also, according to the chain rule of relative entropy (Theorem C.3.1 in [13]), SJ can be
decomposed as follows,

SJ (z ⊗ �t) = ESX|Z(Zt ) + SZ(�t), (4.9)

and so ΣJ comprises two subsystems: the filter system, ΣZ , whose energy depends only
on Zt , and the conditional system, ΣX|Z , whose energy depends on both Xt and Zt . The
latter is always in its minimum free energy state in this decomposition. This minimum free
energy is zero, and so FJ (z ⊗ �t) = FZ(Zt ).

Figure 1 shows the decomposition, and identifies the internal energies and entropies of
the two subsystems. The original system of Sect. 2, ΣX , is also a subsystem of ΣJ . It is split
into two parts in the decomposition of Fig. 1; one part is the conditional system, and the
other is subsumed into ΣZ . This is reflected in the following splits in its energy and entropy:

HX(x) = HX|Z(x, t) + HS(x,Zt ), (4.10)

SX(Pt ) = ESX|Z(Zt ) + C(t), (4.11)

where HS(x, z) (:= HX(x) + HZ(z) − HJ (x, z)) is the energy shared between ΣX and ΣZ .
Since FX|Z(Zt , t) ≡ 0,

d

dt
E EX|Z(Zt , t) = d

dt
E SX|Z(Zt ) = d

dt
SX(Pt ) − Ṡ(t) + Ḋ(t). (4.12)

In order to identify flows of energy in the joint system we consider the effects of turning
off either the dynamics of X, or the observation mechanism at time t ; the former can be
achieved by temporarily setting A to zero, and the latter by temporarily setting g to zero. In
both cases the parameters of the filtering problem are modified at time t , but the modified
Z process retains the property of being the filter for the modified X process; in particular,
the modified partially observed system ΣX|Z remains in its (modified) minimum free energy
state.

Setting A to zero at time t freezes the signal X, thus disconnecting ΣX from its heat
bath. This freezes SX(Pt ) and EX(Pt ), but does not prevent a flow of energy between the
two components of ΣX identified in (4.10) and (4.11). In fact ESX|Z(Zt ) and EEX|Z(Zt , t)
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continue to evolve according to (4.12), but with the first and third terms on the right-hand
side set to zero. So

d

dt
E EX|Z(Zt , t) |A=0= − d

dt
E HS(Xt ,Zt ) |A=0= −Ṡ(t), (4.13)

from which we can conclude that there is an observation-driven macroscopic flow of energy
from ΣX|Z to the shared component (and hence to ΣZ), of rate F1(t) = Ṡ(t).

Setting g to zero at time t disconnects Z from X, thus preventing any further transfer of
entropy from the first term to the second term on the right-hand side of (4.11). Furthermore,
the optimality of the filter prevents any transfer of entropy in the other direction. (The fil-
ter never discards information relevant to the present or future of X.) Thus any change in
SX|Z(Zt ) is entirely due to an interaction between ΣX|Z and the heat bath. Since ΣX|Z is in
a (unit temperature) minimum free energy state, any exchange of entropy with the heat bath
must be accompanied by an equal exchange of energy. With g set to zero, the second term
on the right-hand side of (4.12) is zero, and so the average rate of flow of energy from the
heat bath to ΣX|Z is

F2(t) := d

dt
SX(Pt ) + Ḋ(t). (4.14)

As discussed in Sect. 4.1, the time-varying nature of HX|Z allows energy and entropy ex-
change between ΣX|Z and ΣZ . That this is not possible when g is set to zero, is confirmed
by the following argument.

∂

∂t
HX|Z |g=0= Aζt

ζt

,

and (assuming that ζt is sufficiently regular), for any B ∈ X ,

Żt (B) |g=0=
∫

B

(Aζt )(x)λX(dx).

So EX|Z(Zt , t) is differentiable, and

d

dt
EX|Z(Zt , t) |g=0 =

〈
∂

∂t
HX|Z(·, t) |g=0,Zt

〉
+ 〈HX|Z(·, t), Żt |g=0〉

= 〈HX|Z(·, t), Żt |g=0〉. (4.15)

The two terms on the right-hand side here represent interactions with the filter and heat bath,
respectively. The fact that the first term is zero shows that, with g turned off, the statistical
mechanics of ΣX|Z are not affected by the changing energy function, but only by the random
evolution of X.

The role of the filter in the joint system is to control the energy function HX|Z so that ΣX|Z
remains in its (time varying) minimum free energy state. When g is set to zero the filter can
achieve this without exchanging energy with ΣX|Z . However, when g is not set to zero the
filter has to extract energy at the average rate Ṡ(t). In this case HX|Z is not differentiable with
respect to t , and (4.15) has to be replaced by a stochastic differential equation, in which the
non-zero quadratic variation of HX|Z(·, t) plays a crucial role. In order to cause macroscopic
energy changes in ΣX|Z in its minimum free energy state, any changes in HX|Z must be
large. (In fact of order

√
δt over a small time interval δt .)
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When neither A nor g is set to zero we obtain the three macroscopic energy flows shown
in Fig. 1, where

F3(t) = Ṡ(t) − d

dt
EZ(�t) = d

dt
SX(Pt ) + Ḋ(t) − d

dt
EJ (z ⊗ �t). (4.16)

Remark 4.4 In the stationary state, z ⊗ �SS, all three energy flows have equal rates and,
since the subsystems ΣX|Z and ΣZ are then both in unit-temperature stationary states, the
three energy flows are accompanied by equal entropy flows. Because of these macroscopic
flows, the stationary state is a non-equilibrium state. However, it differs from physical non-
equilibrium states in that the flows are driven by the mechanism of observation rather than
external fields or boundary conditions.

In the stochastic dynamics framework, the non-equilibrium property of a stationary state
manifests itself in the irreversibility of the associated Markov process. This can be quantified
in terms of long-term averages of the relative entropy of the forward and backward path
distributions of the process. (See, for example, [26], where this average is dubbed a rate
of entropy flow.) These techniques cannot be applied directly to the joint system ΣJ since
the relative entropies involved are generally infinite. This is because of the degeneracy of
the filter process Z, which is typically of higher dimension than the running observation
Y r that ‘drives’ it. For example, the filter process for the finite-state signal is an R

n-valued
diffusion driven by the R

d -valued process Y r . If d < n, then the forward and backward path
distributions of the filter process are typically mutually singular. The situation is even worse
for the multidimensional diffusion signal, because the filter is then of infinite dimension, but
still driven by a finite-dimensional running observation.

This problem is not encountered in [34], where a rate of interactive entropy flow for the
linear Gaussian case is defined as the difference between the rate of entropy flow of the joint
process (X,Z) and those of the marginal processes X and Z. This isolates that part of the
irreversibility of the joint process associated with the interaction between its components.
The rate of interactive entropy flow turns out to be the sum of the information supply and
dissipation rates Ṡ and Ḋ, a property that is not immediately obvious. This approach can be
extended to the nonlinear situation of this paper by means of relaxation arguments. However,
we do not pursue this further here. The case of the finite-state signal is developed in depth
in [37]. A fully dynamic approach is taken there in the sense that the long-term averages
of [26] are replaced by short-term averages (entropic derivatives), which admit processes
away from invariant distributions, and even time-inhomogeneous processes. See, also, [36].

The joint system is a type of perpetual motion machine in the sense that it exhibits a
macroscopic flow of energy without the presence of thermal gradients or external fields, or
the increase in entropy these would cause. Of course the joint system is an abstract system
not a physical system. Any physical realisation of the nonlinear filter would necessarily in-
clude components, such as operational amplifiers or digital computers, that created physical
entropy in the course of their operation.

4.3 Statistical Mechanics with Partial Observations

If we take the view that observable components of a system are associated with information
rather than entropy, then the partial observation of ΣX , inherent in Y , enables the entropy
of the former to be reduced. The filter holds an amount C(t) of partial information on ΣX ,
thereby reducing its entropy by the same amount, from SX(Pt ) to ESX|Z(Zt ). (See (4.11).)
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This illustrates Landauer’s Principle (in the reverse sense) in a quantitative way. The filter
can be thought of as a demon whose aim is to minimise the entropy of ΣX at each time t .
Like Maxwell’s demon [30], the filter does this by making use of measurements that are not
macroscopic observables.

If we also take the view that observable components of energy are work, then the partial
observation inherent in Y converts an amount EHS(Xt ,Zt ) of the energy of ΣX into work.
With this convention, the entire energy of the filter system ΣZ , including that shared with
ΣX , is work. The remaining component of the energy of ΣX , EX(Pt ) − EHS(Xt ,Zt ), is the
average energy of the conditional system, EEX|Z(Zt , t). (See (4.10).) Since ΣX|Z is always
in its minimum free energy state, this remaining energy can be regarded as heat.

In the invariant distribution, the heat and work components of the internal energy of ΣX

do not change. However, the filter continues to convert heat into work as new observation
information becomes available. The resulting outflow of heat from ΣX|Z is balanced by an
equal inflow from the heat bath. This inflow has its origins in energy fluctuations. According
to the Convention on Randomisation of Sect. 2, X is randomised by fluctuations of energy
between ΣX and its heat bath. (These may be only partially visible in the sense of Sect. 2.)
During these fluctuations, any energy incoming to ΣX brings with it new entropy and must,
therefore, go to the heat component. However, energy outgoing from ΣX can be from either
the heat or work component. Because of the optimality of the filter, the interface between
the two components of ΣX is a perfect ‘energy valve’; once heat has become work it cannot
revert back to heat without first passing through the heat bath. It is the combined effect of
energy fluctuations and this valve that drive the macroscopic flow of energy.

In the invariant distribution, the inflow of energy to the work component of ΣX , and
hence to ΣZ , is balanced by an equal outflow from ΣZ back to the heat bath. This outflowing
work is associated with degrees of freedom of the filter that no longer bear information about
the signal. The filter re-entropises this work (thereby turning it back into heat) by discarding
information at the rate ḊSS. This illustrates Landauer’s Principle (in the forward sense) in a
quantitative way.

4.4 The Linear Gaussian Case

The joint system was investigated in [34] for the special case in which X is a linear Gaussian
diffusion process and the observation function g is linear. This is a special case of the mul-
tidimensional diffusion example, in which the drift coefficient b and observation function
g are linear, the diffusion coefficient a is constant, and X0 and Z0 are jointly Gaussian.
Because of the special properties of Gaussian distributions, the conditional distribution,
Zt , is also Gaussian in this case, for each realisation of (Ys, s ∈ [0, t]), and so can be
parametrised by its mean vector, X̂t (:= E(Xt | Ys, s ∈ [0, t])), and covariance matrix, Qt

(:= E((Xt − X̂t )(Xt − X̂t )
′ | Ys, s ∈ [0, t])). The evolution equations of X̂ and Q are those

of the Kalman-Bucy filter. (See, for example, [10] or [19].) This particular example of
‘nonlinear’ filtering is, of course, linear. It has found wide application owing to the finite-
dimensional nature of the Gaussian subset of Z, which greatly simplifies its implementation.
It also possesses other special properties; for example, it turns out that the covariance matrix
Qt does not depend on Y , but only on t , and so all the information stored by the filter at
time t is held in the conditional mean vector, X̂t . This takes values in the same space as
Xt , and so the essential features of the filter variable Zt are of the same dimension as the
signal Xt . (This is in contrast with the generic multidimensional diffusion case, in which the
filter variable is necessarily of infinite dimension.)
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5 Time Reversal

Throughout this section we shall assume that X0 and the (surrogate) initial observation, Z0,
have joint invariant distribution z⊗�SS. The statistical mechanical systems ΣX , ΣZ and ΣJ

will then remain in their respective minimum free energy states for all t . Because of this,
they will satisfy the Second Law of Proposition 2.1(iii) in reverse, as well as forward, time.

Consider, for example, the signal system ΣX . Since the Markov property is time-
symmetric, the time-reversed process (XT −t , t ∈ [0, T ]) is also Markov. Since (X, dX) is
complete and separable, (XT −t , t ∈ [0, T ]) will have a time-homogeneous transition funtion
�̄ : [0, T ] × X × X → [0,1]. Let (X̄t , t ∈ [0, T ]) be a Markov process with this transition
function and single-time marginal distributions (P̄t , t ∈ [0, T ]) (not necessarily PSS). Clearly
PSS is an invariant distribution for this process, and so X̄ can be associated with an (abstract)
statistical mechanical system in the manner of Sect. 2. This system has the same energy
function as ΣX , and also the same internal energy, entropy and free energy functionals, EX ,
SX and FX . The time-reversed system, ΣX̄ , obeys the Second Law of Proposition 2.1(iii). In
the special case that ΣX̄ starts in the invariant distribution PSS we can, for the sake of con-
venience, choose X̄t = XT −t for t ∈ [0, T ]. We then have a single process, X, that describes
both systems ΣX and ΣX̄ over the time interval [0, T ]. Of course, we are not implying that
a particular physical system will run backwards in time, but that two different systems can
be described by the same Markov process running forwards and backwards in its invariant
distribution.

When X is the finite-state process, provided pSS(x) > 0 for all x ∈ {1,2, . . . , n}, it is easy
to show that X̄ is a Markov jump process with rate matrix Ā, defined as follows

Āx,x̃ = Ax̃,x

pSS(x)

pSS(x̃)
if x̃ �= x and Āx,x = −

∑
x̃ �=x

Āx̃,x . (5.1)

When X is the multidimensional diffusion process, it can be shown, under mild technical
conditions, that X̄ is also an R

n-valued diffusion process with the same diffusion coefficient
as X, but drift coefficient, b̄, defined as follows:

b̄ := −b + veci{div(ai)} + a∇ logpSS, (5.2)

where ai is the ith column of a. (See [18] for a very general case admitting degenerate a.)
The characterisation of time-reversed Markov processes goes back to [35], which treats the
time-homogeneous case in the invariant distribution.

Time reversal can also be applied to the filter process, Z, and the joint process, (X,Z),
and leads to corresponding abstract statistical mechanical systems in reverse time. The
processes Z and (X,Z) describe reverse-time systems, ΣZ̄ and ΣJ̄ , as well as the forward-
time systems ΣZ and ΣJ . We shall not attempt to characterise the time-reversed transition
functions in the general case as this is not required in what follows.

For each t ∈ [0, T ], let

X∗
t := ZT −t and Z∗

t := XT −t . (5.3)

Since Z is obtained from Y , parts (i)–(iii) of Proposition 3.1 remain true if Y is replaced
by Z. They are then invariant under the transformation of (5.3). This shows that we can
consider X∗ and Z∗ as being the signal and filter processes of a dual problem. The dual
signal, X∗, is a Markov process in its own right evolving on the metric space (Z, dZ), and
the X-valued process Z∗ is a filter for this dual signal in the sense that, for any t ∈ [0, T ],
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Z∗
t is a sufficient statistic for estimating the present and future of X∗ from the past of Z∗. In

fact Proposition 3.1(ii) shows that, for any B ∈ Z ,

P
(
X∗

t ∈ B | Z∗
s , s ∈ [0, t]) = P

(
X∗

t ∈ B | Z∗
t

)
.

Clearly Z∗
t is not the (Z∗

s , s ∈ [0, t])-conditional distribution of X∗
t ; (it does not even take

values in the space of probability measures on Z ). However, like the conditional mean vector
X̂t of the Kalman-Bucy filter, it carries all the information required to construct this con-
ditional distribution. Since the original problem admits an observation-conditional density
process (ζ of (3.3)), the same is true of the dual problem; in fact

P
(
X∗

t ∈ B | Z∗
s , s ∈ [0, t]) =

∫
B

ζ ∗
t (z)λZ(dz),

where

ζ ∗
t (z) = q(Z∗

t )φSS(z)

pSS(Z
∗
t )

, (5.4)

and q is the density of z. (Equation (5.4) is no more than Bayes’ formula applied between
X∗

t and Z∗
t .)

The dual filter process, Z∗, is Markov and it easily follows from Proposition 3.1(i) that
it is also X∗-conditionally Markov. When X is the finite-state process, Z∗ is a Markov
jump process with marginal rate matrix Ā of (5.1), and X∗-conditional rate matrix Ă(X∗

t ) at
time t , where

Ă(z)x,x̃ = Ax̃,x

z({x})
z({x̃)} if x̃ �= x and Ă(z)x,x = −

∑
x̃ �=x

Ă(z)x̃,x . (5.5)

(See [37].) When X is the multidimensional diffusion process (and under the conditions
of [18]), Z∗ is an R

n-valued diffusion process with diffusion coefficient a, and drift co-
efficient b̄, of (5.2). Furthermore, it is X∗-conditionally an R

n-valued diffusion process
with diffusion coefficient a and X∗

t -dependent drift coefficient b̆(·,X∗
t ) at time t , where

b̆ : X × Z → R
n is defined as follows:

b̆(·, z) = −b + veci{div(ai)} + a∇ logq, (5.6)

and q is the density of z. (See Theorem 4.2 in [33].)
So far we have identified dual signal and filter processes, X∗ and Z∗, but not a dual

observation process. One possibility is to consider Z∗ itself as being the observation process,
in which case there is no processing for the filter to do. It is certainly reasonable to define
the dual initial observation, ψ∗, to be Z∗

0 (just as Z0 was regarded as a surrogate observation
for ψ in Sect. 3). However, there are other interesting possibilities for the dual running
observation, Y ∗r . When X is the finite-state process we can define this to be an n-vector of
Poisson counting processes with rates that depend on the value of the dual signal process,
X∗. For a full development, see [37]. When X is the multidimensional diffusion process, the
dual filter process Z∗ is a solution of the following Itô stochastic differential equation:

Z∗
t = Z∗

0 +
∫ t

0
b̆(Z∗

s ,X
∗
s ) ds +

∫ t

0
σ(Z∗

s ) dW ∗
s , (5.7)
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where σ is as in (2.5) and (W ∗
t , t ∈ [0, T ]) is an n-dimensional Brownian motion. This

equation can be re-expressed as follows:

Z∗
t = Z∗

0 +
∫ t

0
(−b + veci{div(ai)}) (Z∗

s ) ds +
∫ t

0
σ(Z∗

s ) dY ∗r
s , (5.8)

where

Y ∗r
t =

∫ t

0
g∗(Z∗

s ,X
∗
s ) ds + W ∗

t , (5.9)

and, for x ∈ X and z ∈ Z with density q ,

g∗(x, z) := (σ ′∇ logq)(x). (5.10)

This identifies a dual running observation of the same signal-plus-white-noise type as that
of the original filter, Y r .

In both of these examples Y ∗ is actually defined in terms of Z∗, and thus contains no
more ‘noise’ than Z∗; however it is easy to construct dual observation processes for which
this is not the case. The only requirements of Y ∗ are that:

(O1) Z∗
t is (Y ∗

s , s ∈ [0, t])-measurable for all t ;
(O2) X∗ and (Y ∗

s , s ∈ [0, t]) are Z∗
t -conditionally independent for all t .

The first of these requires that the dual filter should be causally derivable from Y ∗, the second
that any randomness in Y ∗ that is not in Z∗ should bear no additional information about X∗.
(See [37] for further discussion.)

As with the original filter, we can identify information supply, storage and dissipation
processes for the dual filter: for any t ∈ [0, T ],

S∗(t) := I ((X∗
s , s ∈ [0, T ]); (Y ∗

s , s ∈ [0, t])),
C∗(t) := I ((X∗

s , s ∈ [t, T ]); (Y ∗
s , s ∈ [0, t])), (5.11)

D∗(t) := S∗(t) − C∗(t).

Remark 5.1 (Technical) The paths of Y ∗ are assumed here to take values in a metric space,
for example, the Skorohod space D([0, T ];R

k) of vector-valued functions with left and right
limits at all points t ∈ (0, T ) that are left or right continuous at all t ∈ [0, T ]. The paths of
X∗ take values in the metric space C([0, T ];Z), which is metrised by the supremum metric.

It follows from (O2) and Proposition 3.1(iii) that

C∗(t) = I (X∗
t ;Z∗

t ) = C(T − t).

Furthermore, it follows from (O2), the chain rule of relative entropy and (3.9) that, for any
t ∈ [0, T ],

S(T ) = S∗(T ) = S∗(T − t) + D(t) = S(t) + D∗(T − t),

so that, for any 0 ≤ s ≤ t ≤ T ,

S(t) − S(s) = D∗(T − s) − D∗(T − t),

D(t) − D(s) = S∗(T − s) − S∗(T − t).
(5.12)
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(These expressions remain valid without any assumptions on dynamics or invariant distri-
butions. See [37].) Over the time interval [s, t] an amount S(t) − S(s) of new information
is supplied by the observations of the original problem. By new we mean that it relates to
a dependency between Xt and Zt that does not have its origins in a dependency between
(Xr, r ∈ [0, s]) and (Zr, r ∈ [0, s]). Because of this, the dual filter dissipates it over the
reverse time interval [T − t, T − s]. The dissipation of one filter is the supply of its dual.

Since (X,Z) is in the invariant distribution z ⊗ �SS the rates of information supply and
dissipation of both original and dual filters are equal. For example, when X is the finite-state
signal, it follows from (3.10) and (3.13) that

ṠSS = ḊSS = Ṡ∗
SS = Ḋ∗

SS = 1

2
E |g(Xt ) − 〈g,Zt 〉|2

= E

∑
x,x̃

(
log

ζt (x)

pt (x)
− log

ζt (x̃)

pt (x̃)

)
Ax̃,xζt (x)

= E

∑
x

log

(
q(x)pSS(Z

∗
t )

q(Z∗
t )pSS(x)

)
g∗(Z∗

t ,X
∗
t )x, (5.13)

where

g∗(x, z)z̃ := (1 − dX(x̃, x))Ă(z)x̃,x .

When X is the multidimensional diffusion process, it follows from (3.10) and (3.12) that

ṠSS = ḊSS = Ṡ∗
SS = Ḋ∗

SS = 1

2
E |g(Xt) − 〈g,Zt 〉|2

= 1

2
E ∇ log(ζt/pt )

′a∇ log(ζt/pt )(Xt )

= 1

2
E

∣∣g∗(Z∗
t ,X

∗
t ) − 〈g∗(Z∗

t , ·), ζ ∗
t dλZ〉∣∣2

, (5.14)

where g∗ is as defined in (5.10).
The statistical mechanical properties of the joint process (X,Z), of Sect. 4, clearly apply

also to the dual joint process (X∗,Z∗). The dual joint system, ΣJ ∗ , thus comprises a dual
filter system, ΣZ∗ , and a dual conditional system, ΣX∗|Z∗ . These have energy functions, HJ ∗ ,
HZ∗ and HX∗|Z∗ , and internal energies and entropies defined in the obvious way. These obey
the statistical mechanical laws of Propositions 2.1 and 4.1. The equivalent of (4.12) for the
dual joint system is

d

dt
E EX∗|Z∗(Z∗

t , t) = d

dt
E SX∗|Z∗(Z∗

t ) = d

dt
SX∗(P ∗

t ) − Ṡ∗(t) + Ḋ∗(t).

This can be used to find macroscopic flows of energy between the components of ΣJ ∗ by the
techniques of Sect. 4.2; these involve temporarily setting A∗ or g∗ to zero. Of course, chang-
ing a parameter of the dual system in this way will destroy the special nature of the dual filter,
whose density ζ ∗ will no longer depend on Y ∗ through the simple statistic Z∗ as in (5.4),
but will evolve with far more complex dynamics. However, its effect on the dual conditional
system ΣX∗|Z∗ will still be to change the latter’s energy function, HX∗|Z∗ , in a way that keeps
ΣX∗|Z∗ in its minimum free energy state, and this is all that is required for the calculation
of macroscopic energy flows. These techniques show that there is a dual-observation driven
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Fig. 2 Full energy flows in the
joint system

flow of energy from ΣX∗|Z∗ to ΣZ∗ , and a flow of energy from the heat bath to ΣX∗|Z∗ . Since
ΣJ ∗ is always in its stationary state, both of these flows have rate Ṡ∗

SS (= ṠSS). The first flow
can be interpreted in forward time as a dissipation-driven flow of energy from the shared
component, ESSHS(Xt ,Zt ), to the ‘conditional filter’, ΣZ|X . The latter is the forward time
interpretation of ΣX∗|Z∗ and has internal energy EZ(�SS)−ESSHS(Xt ,Zt ). In forward time,
the second flow is from this conditional filter to the heat bath.

Figure 2 shows all the energy flows of ΣJ . The flow into ΣZ , F1,SS, is driven by infor-
mation supply, and that out of ΣX , F4,SS, by information dissipation. All energy flows are
accompanied by equal entropy flows. As is clear from Fig. 2, the conditional system, ΣX|Z ,
is part of the heat bath with which the filter system, ΣZ , interacts. Moreover, it is a part
of the heat bath that only supplies energy and entropy. Similarly, ΣZ|X , is part of the heat
bath with which ΣX interacts, and a part that only absorbs entropy and energy. These roles
are exchanged in the dual system. The joint system has ‘energy valves’ at the two dashed
interfaces in Fig. 2, that prevent energy flow from left to right. Combined with the statistical
fluctuations of energy caused by the heat bath, these are what drive macroscopic flows of
energy.

6 Complexity Issues

As discussed in Sect. 4.3, the filter system ΣZ can be thought of as a dynamical machine
that makes optimal use of the partial observations Y to extract information and work from
the signal system ΣX . As a rule, this dynamical machine is considerably more complex than
the system from which it extracts; for one thing its phase space, Z, is the space of proba-
bility measures on that of ΣX . This complexity is one of the features that make nonlinear
filters difficult to implement in practice. An important exception occurs when X is a linear
Gaussian diffusion process, and the observation function is linear (g(x) = Gx). (See the
discussion in Sect. 4.4.) Then the (Ys, s ∈ [0, t])-conditional mean, X̂t , of the Kalman-Bucy
filter is a sufficient statistic for computing Zt , and since X̂t evolves according to linear dy-
namics on R

n, the complexity of ΣZ is no greater than that of ΣX . This feature is a property
of the algebraic structure of the filtering equation (3.3) in this case.

The filter density process for a multidimensional diffusion signal, ζ of (3.3), does not
in general have a finite-dimensional underlying structure. It follows from some important
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theorems of nonlinear filtering (see [6, 7, 11]) that, modulo technical conditions, there exists
a continuous functional, Q : [0, T ] × R

n × YT → R
+, such that for (almost) all (t, x),

ζt (x) =
(∫

Q(t, x̃, (Ys, s ∈ [0, T ])) dx̃

)−1

Q(t, x, (Ys, s ∈ [0, T ])), (6.1)

where YT is as defined in Definition 3.1. Q(t, x, (Ys, s ∈ [0, T ])) is an un-normalised den-
sity process in that its integral over x is not unity. Furthermore, for any z0 ∈ Z having a
density q0, and any differentiable yr : [0, T ] → R

d , Q(t, x, (z0, y
r)) satisfies the following

(non-stochastic) partial differential equation:

∂Q

∂t
=

(
A − 1

2
|g|2

)
Q + (ẏr

t )
′gQ; Q(0, x, (z0, y

r)) = q0(x), (6.2)

where A is the differential operator of (2.4), and g is the observation function of (3.1). This
is the so-called pathwise version of the Zakai equation of nonlinear filtering [11]. Equation
(6.2) is a multi-linear equation involving the d + 1 vector fields (gi, i = 1,2, . . . , d) and
A − 1

2 |g|2. If the Lie algebra, L, generated by these is of finite dimension, and the initial
conditional distribution Z0 is appropriate, then we might expect the nonlinear filter to be
expressible in terms of a sufficient statistic that evolves on a finite-dimensional manifold. In
the case of the Kalman-Bucy filter, L is contained in the (2n + 1)-dimensional Lie algebra
generated by the vector fields (xi, ∂/∂xi, i = 1,2, . . . , n) and A − 1

2 |Gx|2.
The Kalman-Bucy filter is not the only filter for a multidimensional diffusion process ad-

mitting a finite-dimensional implementation. Other examples were discovered by Benes̆ [1]
and Daum [9]. However, such examples are rare. (The reader interested in connections be-
tween the algebraic structure and dimension of nonlinear filters is referred to [5, 29, 32] for
further information.)

The complexity of nonlinear filters for multidimensional diffusion processes in the gen-
eral case is a result of the interaction between the vector fields g1, g2, . . . , gd and A − 1

2 |g|2.
The multiplicative vector fields gi are associated purely with the supply of information,
whereas A is associated purely with its dissipation. It is the interplay between these two
mechanisms that underlies the complexity of nonlinear filters in the general case. In order
to perform its role, the filter has to store much more information than that relating to the
current signal value, Xt . In fact, in total, the filter stores the (typically) infinite amount of
information I (Zt ;Zt). Compare this with the information it stores on Xt , C(t); under the
finite energy condition (3.2) this is finite. The filter needs to store a large amount of ‘man-
agement’ information in order to know how to process incoming information and dissipate
redundant information correctly.

The dual system of Sect. 5 is in striking contrast with this general rule of complexity.
Here the phase space and dynamics of the filter system, ΣZ∗ , are actually simpler than
those of the signal system, ΣX∗ . This is due to the special relationship between the prior
distribution of the dual signal and the observation mechanism, which allows the dual filter
density to be expressed in the simple product form of (5.4). The dual supply and dissipation
processes interact in a particularly simple way. In some sense, the dual filter does not have
as large a ‘management overhead’ of information as the original filter. For example, if X

is the finite-state process and n = 2 then the total information stored by the dual filter at
time t is I (Z∗

t ;Z∗
t ) ≤ log(2), less than one bit. This is of the same order of magnitude as

the information it stores on X∗
t . This asymmetry is an indicator of the direction of time,

even if the processes X and Z are in their joint invariant distribution, and even if the joint
systems ΣJ and ΣJ ∗ do not produce entropy in this distribution. Even though the original
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and dual joint systems, ΣJ and ΣJ ∗ , have identical statistical mechanical properties, the
relative complexity of the signal and filter systems is highly asymmetric. This is not so if the
original filter has finite-dimensional algebraic structure; a fact that is undoubtedly related to
underlying dynamics that conserve more physical quantities than energy and entropy.
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Appendix: Proof of Proposition 4.1

We start by introducing some notation. For a stochastic process φ taking values in a complete
separable metric space �, and for 0 ≤ t ≤ s ≤ T , we denote by F φ

t,s the σ -field generated
by the process (φr , r ∈ [t, s]). If � is a linear space over R, we denote by F �φ

t,s the σ -field
generated by the increments process (φr − φt , r ∈ [t, s]).

For sub-σ -fields F1, F2, G ⊂ F , we use the notation CI(F1, G, F2) to indicate that F1 and
F2 are G -conditionally independent. Thus, for part (ii) of the proposition, we need to prove
that CI(F X

t,T , F X
t,t , F X,Y

0,t ). We shall make frequent use of Proposition 3.2a in [41], which
states that

CI(F1, G, F2 ∨ F3) ⇐⇒ CI(F1, G, F2) and CI(F1, G ∨ F2, F3). (A.1)

By hypothesis, for any t ∈ [0, T ], CI(σ (ψ) ∨ F �W
0,t , F X

0,0, F X
0,T ), and a left-to-right ap-

plication of (A.1) shows that CI(σ (ψ) ∨ F �W
0,t , F X

0,t , F X
t,T ). This, together with the Markov

property of X, CI(F X
t,T , F X

t,t , F X
0,t ), and a right-to-left application of (A.1) proves part (ii).

It follows from part (ii) and a left-to-right application of (A.1) that CI(F X
t,s , F X,Z

t,t , F X,Y
0,t )

for any s ∈ [t, T ], and since CI(F X,Y
0,t , F X,Z

t,t ∨ F X
t,s , F Z

t,t ) (as a result of the second σ -field

containing the third), a right-to-left application shows that CI(F X
t,s ∨ F Z

t,t , F X,Z
t,t , F X,Y

0,t ). Since
F �W

t,s is independent of all the σ -fields here it can be added to the first term to yield, in
particular,

CI(F X
t,s ∨ F Z

t,t ∨ F �Y
t,s , F X,Z

t,t , F X,Y
0,t ). (A.2)

We will thus have proved part (i) if we can show that

F Z
s,s ⊆ F Z

t,t ∨ F �Y
t,s ∨ N , (A.3)

where N comprises the null sets of P.
It easily follows from the definition of Zt that

CI(F Y
0,t , F Z

t,t , F X
t,t ), (A.4)

and since (A.2) implies in particular that CI(F X
t,s ∨ F �Y

t,s , F X,Z
t,t , F Y

0,t ), a right-to-left appli-
cation of (A.1) shows that CI(F X

t,s ∨ F �Y
t,s , F Z

t,t , F Y
0,t ). A left-to-right application to this

shows that CI(F X
t,s , F Z

t,t ∨ F �Y
t,s , F Y

0,t ). Now CI(F X
t,s , F Z

t,t ∨ F Y
0,s , F �Y

t,s ) (as a result of the
second σ -field containing the third), and so a right-to-left application of (A.1) shows that
CI(F X

t,s , F Z
t,t ∨ F �Y

t,s , F Y
0,s ). It thus follows that, for any B ∈ X ,

Zs(B) = E(1B(Xs) | F Z
t,t ∨ F �Y

t,s ) a.s.



736 N.J. Newton

Thus σ(Zs(B)) ⊆ F Z
t,t ∨ F �Y

t,s ∨ N , and (A.3) follows from Lemma A.5.1 in [13]. This proves
part (i).

It easily follows from (A.4) that CI(F X,Z
t,t , F Z

t,t , F Y
0,t ), which, together with part (i) and a

right-to-left application of (A.1), proves part (iii).
It follows from part (ii) and (A.4) that

C(t) = I (Xt ; (Ys, s ∈ [0, t])) = I (Xt ;Zt),

which proves (3.8). Furthermore, it follows from part (ii) and a simple variant (that includes
the initial observation) of Theorem 7.23 in [27] that

S(t) = I ((Xs, s ∈ [0, t]); (Ys, s ∈ [0, t])) = E logMt,

where

Mt = dZ0

dP0
(X0) exp

(∫ t

0
(g(Xs) − 〈g,Zs〉)′ dWs + 1

2

∫ t

0
|g(Xs) − 〈g,Zs〉|2 ds

)
.

Since (g(Xt ), t ∈ [0, T ]) satisfies (3.2) the stochastic integral here has zero mean, (see, for
example, [21]), and this proves (3.7).

Let ξt := (Xs, s ∈ [0, t]) and Ot := (Ys, s ∈ [0, t]). Since the paths of X are right-
continuous and have left limits ξt takes values in the complete separable metric space
D([0, t];X). This fact enables the following factorisations of Pξt and Pξt |Ot to be made:
Pξt = Pξt |Xt ⊗ Pt , and Pξt |Ot = Pξt |Xt ,Ot ⊗ Zt . It then follows from the chain rule of relative
entropy (see, for example, Theorem C.3.1 in [13]) that

D(t) = Eh(Pξt |Xt ,Ot (·,Xt ,Ot ) | Pξt |Xt (·,Xt )),

and (3.9) follows from the defintion of the conditional mutual information. This completes
the proof of part (iv).
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